A megoldás A 1200 hány százaléka 13-nak:

1200:13*100 =

(1200*100):13 =

120000:13 = 9230.77

Most ennyit kaptunk: A 1200 hány százaléka 13-nak = 9230.77

Kérdés: A 1200 hány százaléka 13-nak?

Százalék megoldás lépésekkel:

Feltételezzük, hogy 13 a 100%-nak felel meg, mivel ez a kimeneti értékünk.

Most a következővel fejezzük ki a keresett értéket {x}.

Az 1. lépésből következik, hogy {100\%}={13}.

Ehhez hasonlóan, {x\%}={1200}.

Így kapunk egy pár egyszerű egyenletet:

{100\%}={13}(1).

{x\%}={1200}(2).

Ha elosztjuk az 1. egyenletet a 2. egyenlettel,
és megfigyeljük, hogy mindkét egyenlet bal oldalán ugyanaz az egység (%) van; ezt kapjuk

\frac{100\%}{x\%}=\frac{13}{1200}

Ha fogjuk mindkét oldal ellentétét (reciprokát), a következőt kapjuk

\frac{x\%}{100\%}=\frac{1200}{13}

\Rightarrow{x} = {9230.77\%}

Tehát, {1200} {9230.77\%}-a {13}-nak/nek.


Minek a százaléka Táblázat ehhez: 1200


A megoldás A 13 hány százaléka 1200-nak:

13:1200*100 =

(13*100):1200 =

1300:1200 = 1.08

Most ennyit kaptunk: A 13 hány százaléka 1200-nak = 1.08

Kérdés: A 13 hány százaléka 1200-nak?

Százalék megoldás lépésekkel:

Feltételezzük, hogy 1200 a 100%-nak felel meg, mivel ez a kimeneti értékünk.

Most a következővel fejezzük ki a keresett értéket {x}.

Az 1. lépésből következik, hogy {100\%}={1200}.

Ehhez hasonlóan, {x\%}={13}.

Így kapunk egy pár egyszerű egyenletet:

{100\%}={1200}(1).

{x\%}={13}(2).

Ha elosztjuk az 1. egyenletet a 2. egyenlettel,
és megfigyeljük, hogy mindkét egyenlet bal oldalán ugyanaz az egység (%) van; ezt kapjuk

\frac{100\%}{x\%}=\frac{1200}{13}

Ha fogjuk mindkét oldal ellentétét (reciprokát), a következőt kapjuk

\frac{x\%}{100\%}=\frac{13}{1200}

\Rightarrow{x} = {1.08\%}

Tehát, {13} {1.08\%}-a {1200}-nak/nek.